Minicourse on smoothing theory Universität Göttingen

Jim Davis

November 19, 2015

Slogan (Bill Clinton): It depends on what the meaning of the word "is" is.

Our goal is to prove:

Theorem 1. Let $n \geq 5$. Let Σ^n be an exotic sphere and Ω^n be an exotic torus, smooth manifolds which are homeomorphic, not diffeomorphic, to a sphere and torus respectively. Then $T^n \# \Sigma^n$ is not diffeo to T^n , and $\Omega^n \times T^k$ is not diffeomorphic to T^{n+k} .

1 Generalities

- 1. A topological n-manifold X is a second countable Hausdorff space locally homeomorphic to \mathbb{R}^k .
- 2. A *smooth manifold* is a topological manifold with a maximal smooth atlas.
- 3. Let X be a topological n-manifold. A smoothing of X is a maximal smooth atlas on X. A marking on X is a homeomorphism $h: M \to X$ from a smooth manifold to X; it induces a smoothing X_h on X. Two markings $h: M \to X$ and $h': M' \to X$ induce the same smoothing $(X_h = X_{h'})$ iff there is a diffeomorphism $\phi: M \to M'$ so that $h' \circ \phi = h$.
- 4. The moduli set M(X) is the set of diffeomorphism classes of smooth manifolds homeomorphic to X.

- 5. Two smooth structures X_0 and X_1 on X are *concordant* if there is a smooth structure on $X \times I$ which restricts to X_i on $X \times i$, i = 0, 1. (A concordance is determined by a marking $H : W \to X \times I$).
- 6. Two smooth structures X_0 and X_1 are *isotopic* if there is a smooth manifold M and a level-preserving homeomorphism $H: M \times I \to X \times I$ (H(x,t) = (F(x,t),t)) inducing X_i on $X \times i$, i = 0, 1.

Theorem 2 (Concordance implies isotopy). If dim $X \ge 5$, then concordant structures are isotopic (and hence diffeomorphic).

Thus concordant structures are diffeomorphic. This also follows from the s-cobordism theorem.

7. The structure set S(X) is the set of concordance classes of smoothing on X. Note

$$S(X) \twoheadrightarrow M(X)$$

- **Example 3.** (a) A point has an infinite number of markings but one smoothing.
- (b) S^1 has an infinite number of smoothings, but $S(S^1) = *$
- (c) $S(S^7) = \mathbb{Z}/28, M(S^7) = \mathbb{Z}/28/(x \sim -x)$ so $\#M(S^7) = 15$
- (d) $M(E_8^{4k}) = \emptyset$. (E_8 is a closed, topological 4k-manifold with signature 8. Note that $E_8 *$ is smoothable with a trivial tangent bundle.)
- (e) Let M and N be a smooth manifolds with ∂ and $f : \partial M \to \partial N$ be a diffeomorphism. Then $M \cup_f N$ is a topological manifold. It doesn't have a unique smoothing, but it has a unique concordance class of smoothings in $S(M \cup_f N)$.

Why is S(X) nicer than M(X)? It is in bijection with a *computable* abelian group, and useful for gluing.

8. Homeo(X) $\curvearrowright S(X)$ ($\alpha, [X_h]$) $\mapsto [X_{\alpha \circ h}]$. I.e. $M \xrightarrow{h} X \xrightarrow{\alpha} X$.

Lemma 4. Homeo $(X) \setminus S(X) \to M(X)$ is a bijection.

Proof. Well-defined and onto are clear.

Injective? If $f: M \to X, g: M \to X$ are markings, then $f = (f \circ g^{-1}) \circ g$.

Let $\operatorname{Homeo}_0(X)$ be the group of homeomorphisms isotopic to the identity. The mapping class group MCG(X) is $\operatorname{Homeo}(X)/\operatorname{Homeo}_0(X)$. Two homeomorphisms $\alpha, \beta \in \operatorname{Homeo}(X)$ are pseudoisotopic if there is $\gamma \in \operatorname{Homeo}(X \times I)$ so that $\alpha = \gamma|_{X \times 0}$ and $\beta = \gamma|_{X \times 1}$. The reduced mapping class group $\widetilde{MCG}(X)$ is $\operatorname{Homeo}(X)/\Psi\operatorname{Homeo}_0(X)$, so two homeos represent the same element iff they are psuedoisotopic.

Note that $\Psi \text{Homeo}_0(X)$ acts trivially on S(X). We conclude

Lemma 5. $\widetilde{MCG}(X) \setminus S(X) \to M(X)$ is a bijection.

Remark 6. Suppose X_0 is a smoothing of X and suppose $\text{Diffeo}(X) \setminus S(X) \to M(X)$ is a bijection. Then any smoothing not concordant to X_0 is not diffeomorphic to X_0 .

This is what happens for the torus.

Lemma 7. $\widetilde{MCG}(T^n) \xrightarrow{\cong} GL_n(\mathbb{Z})$

Proof. There is a split surjection H_1 : Homeo $(T^n) \to GL_n(\mathbb{Z})$ split by L. We need to show that any $h: T^n \to T^n$ is Ψ -isotopic to $L \circ H_1(h)$.

Note they are homotopic: (1) use $T^n = K(\mathbb{Z}^n, 1)$ or (2) lift h to \tilde{h} : $\mathbb{R}^n \to \mathbb{R}^n$. Take a straightline homotopy between \tilde{h} and $L \circ H_1(h)$.

Now apply the Borel conjecture for $T^n \times I$, to see the homotopy is homotopic, relative to $\partial(T^n \times I)$ to a homeomorphism.

2 Bundles

Let $BO(n) = Gr(n, \mathbb{R}^{\infty})$. This is a classifying space for vector bundles over a finite CW complex B:

There is an *n*-plane bundle γ over BO(n) so that

$$[B, BO(n)] \to \{\text{iso classes of } n\text{-plane bundles over } B\}$$

 $[f] \mapsto [f^*\gamma]$

Example 8. Let $M^n \subset \mathbb{R}^k$ be a smooth submanifold. Then $M \to Gr(k, \mathbb{R}^k), \quad p \mapsto T_p M \subset \mathbb{R}^n.$

Definition 9. Two vector bundles η and ξ over B are stably equivalent if $\eta \oplus \underline{\mathbb{R}}^k \cong \xi \oplus \underline{\mathbb{R}}^l$

Let $BO = \operatorname{colim} BO(n)$. Then [B, BO] classifies stable vector bundles over B. It is an abelian group, computable by the Atiyah-Hirzebruch spectral sequence.

Definition 10. A *n*-plane *microbundle over B* is a pair of maps

$$B \xrightarrow{i} E \xrightarrow{p} B$$

satisfying $p \circ i = \text{Id}_B$ and the following local triviality condition: for every $b \in B$ there exists open neighborhoods U of b and V of i(b) with $i(U) \subset V$ and a homeomorphism $V \to U \times \mathbb{R}^n$ so that the following diagram commutes

Example 11. The tangent microbundle of a topological n-manifold X is

$$X \xrightarrow{\Delta} X \times X \xrightarrow{p_1} X.$$

Most of the machinery of bundle theory applies to microbundles. For example, two bundles $B \xrightarrow{i} E \xrightarrow{p} B$ and $B \xrightarrow{i'} E' \xrightarrow{p'} B$ are *isomorphic* if there are neighborhoods W and W' of i(B) and i'(B) respectively and a commutative diagram

An \mathbb{R}^n -bundle with a zero section is a fiber bundle $E \to B$ with fiber \mathbb{R}^n and structure group TOP(n) = Homeo (\mathbb{R}^n rel 0). Every \mathbb{R}^n -bundle with a zero section determines a microbundle. A theorem of Kister and Mazur gives a one-to-one correspondence between isomorphism classes of \mathbb{R}^n -bundles with a zero section and isomorphism class of microbundles.

There are spaces BTOP(n) and BTOP which classify microbundles and stable microbundles. Assume $BO \rightarrow BTOP$ is a fibration by redefining BO = ETOP/O or by replacing the map by a fibration.

3 Fundamental Theorem

Given a diagram

$$A \xrightarrow{\alpha} C \xrightarrow{B} C$$

let $\operatorname{Lift}_p(\alpha)$ be the set of maps $\widehat{\alpha} : A \to B$ so that $p \circ \widehat{\alpha} = \alpha$. Let $[\operatorname{Lift}_p(\alpha)]$ be the set of vertical homotopy classes of lifts. A vertical homotopy is a map $H : A \times I \to B$ so that for all $a \in A$ and $t \in I$, $p(H(a,t)) = \alpha(a)$, in which case H(-,0) and H(-,1) are vertically homotopic. We will usually leave p out of the notation.

Fundamental Theorem of Smoothing. Let X be a topological manifold with dim $X \ge 5$. Let $\tau_X : X \to BTOP$ denote a classifying map of the stable tangent bundle. X admits a smooth structure if and only if there is a lift

 $X \to BO$ such that the following diagram commutes.

In fact, the classifying map of the smooth tangent bundle gives a bijection

$$\mathcal{S}(X) \xrightarrow{\sim} [\text{Lift}(\tau_X)]$$

where $[\text{Lift}(\tau_X)]$ denotes vertical homotopy classes of lifts of τ_X (vertical homotopy means a homotopy through lifts).

To illustrate some subtlety, note that exotic spheres are stably parallelizable – why does this not contradict the fundamental theorem?

4 Some homotopy theory

Let X_h be a smooth structure on X. We wish to establish a bijection $j_h : [X, TOP/O] \xrightarrow{\cong} S(X).$

- 1. *TOP/O* is 2-connected (showing that it is path-connected is a difficult theorem the solution to the annulus conjecture.)
- 2. TOP/O, O, TOP, BTOP, BO are *H*-spaces (idea: $\mathbb{R}^{\infty} \oplus \mathbb{R}^{\infty} \cong \mathbb{R}^{\infty}$).
- 3. TOP/O, O, TOP, BTOP, BO are infinite loop spaces: e.g. $\exists A_1, A_2, \ldots$ so that $TOP/O \simeq \Omega A_1, A_1 \simeq \Omega A_2$, etc., where \simeq means homotopy equivalent.
- 4. There is a long exact sequence of abelian groups

$$\cdots \rightarrow [\Sigma B, BO] \rightarrow [\Sigma B, BTOP] \rightarrow [B, TOP/O] \rightarrow [B, BO] \rightarrow [B, BTOP]$$

5. $BO \rightarrow BTOP$ is a principal TOP/O-bundle.

TOP/O is an *H*-space and I am not going to spell out what I mean by a principal *H*-space bundle. But it does mean that there is a commutative diagram

and hence a map $[B, BO] \times [B, TOP/O] \rightarrow [B, BO]$.

Corollary 12.

The abelian group [B, TOP/O] acts freely and transitively (on the right) on $[\text{Lift}(\tau)]$.

Thus if we choose a lift $\hat{\tau} : B \to BO$, there the orbit map gives a bijection $[B, TOP/O] \xrightarrow{\simeq} [\text{Lift } \tau].$

In particular, if M is a smooth manifold of dimension ≥ 5 , there is a bijection

 $j_h : [M, TOP/O] \xrightarrow{\simeq} S(M)$

defined by acting on the tangent bundle $\tau : M \to BO$ to get a new lift of $p \circ \tau : M \to BTOP$, and choosing the corresponding smooth structure given by the fundamental theorem.

Furthermore, since TOP/O is an infinite loop space, the Atiyah-Hirzebruch spectral sequence applies to compute [M, TOP/O], which is H^0 of a generalized cohomology theory.

5 Exotic spheres

Let Θ_n be the equivalence classes of smoothing on S^n under orientationpreserving diffeomorphism. This is an abelian monoid under connected sum.

Lemma 13. Let $n \geq 5$.

1. Θ_n is a finite abelian group.

- 2. $S(S^n) \xrightarrow{\sim} \Theta_n$
- 3. The composite $\pi_n(TOP/O) \xrightarrow{\sim} [\text{Lift}(\tau_{S^n})] \xleftarrow{\sim} S(S^n) \xrightarrow{\sim} \Theta_n$ is an isomorphism of abelian groups.

Discussion of proof. Smale proved that every exotic sphere of dimension ≥ 5 is obtained by gluing $D^n \cup_f D^n$ for some diffeomorphism $f: S^{n-1} \to S^{n-1}$. It follows that Θ_n is a group. The finiteness is due to Kervaire-Milnor. It is easy to see an epimorphism $S(S^n) \to \Theta_n$. To show injectivity one uses the Alexander trick. \Box

Lemma 14. Let M and N be smooth manifolds with dim $M \ge 5$.

1. If M is closed, connected, let $c : M \to S^n$ be a degree one map; for example, choose an embedded disk $D^n \hookrightarrow M$ and let $c : M \to M/(M - int D^n) = S^n$ be the quotient map. The following diagram commutes

where the bottom horizontal map is $[\Sigma] \mapsto [M \# \Sigma]$.

2. The following diagram commutes

where the bottom horizontal map is $[M_h] \mapsto [M_h \times N]$

Proof. 1. The idea is that there is a cobordism W from M to $M \coprod S^n$ and that the corresponding assertion is obvious for $M \coprod S^n$. Indeed, let $\phi : S^0 \times D^n \hookrightarrow M \coprod S^n$ (whose image intersects both M and S^n) and let $W = (M \coprod S^n) \times I \cup_{\phi} D^1 \times D^n$ be the result of adding a 1-handle to Malong ϕ . Give W a smooth structure which restricts (up to concordance) to the given smooth structures on the boundary. There is a commutative diagram

The middle and right horizontal arrows are induced by restriction, and the upper left horizontal arrow is induced by inclusion of a summand. For a smooth structure Σ on S^n , let $\alpha[\Sigma] = [M \coprod \Sigma]$ and $\gamma[\Sigma] = [M \# \Sigma]$. For the definition of β choose a point $p \in S^n$ and glue W minus an open tubular neighborhood of $\{p\} \times I$ with $\Sigma \times I$ minus an open tubular neighborhood of $\{p\} \times I$. Note then that $S(W) \to S(M \coprod S^n)$ is a bijection and Lemma 14 1 follows.

2. We will show that diagram below is commutative

where the middle horizontal arrow is defined using the *H*-space map $BO \times BO \rightarrow BO$ which has that property that if $X_i \rightarrow BO$, i = 1, 2 classifies a bundles α_i , i = 1, 2 then $X_1 \times X_2 \rightarrow BO \times BO \rightarrow BO$ classifies $\alpha_1 \times \alpha_2$. It follows that the bottom rectangle commutes. The top rectangle commutes because the following diagram commutes:

6 The torus

Theorem 15. Let $n \ge 5$. Let Σ^n be an exotic sphere and let Ω^n be an exotic torus.

- 1. $[T^n \# \Sigma^n] \neq [T^n] \in S(T^n)$
- 2. $[T^k \times \Omega^n] \neq [T^{k+n}] \in S(T^{k+n}).$
- 3. $[T^n \# \Sigma^n] \neq [T^n] \in M(T^n) \text{ and } [T^k \times \Omega^n] \neq [T^{k+n}] \in M(T^{k+n}).$

Proof. 1. The key fact we need to show is that c^* : $[T^n, TOP/O]$ → $[S^n, TOP/O]$ is injective. Since pr is split surjective, pr^{*} is split injective, so the desired result follows from the above lemma. The key ingredients in showing that c^* is injective (actually split injective) are that TOP/O is 2-connected, that $TOP/O \simeq \Omega A_1$ for some space A_1 , and that $\Sigma T^n \simeq \lor e^j$. We will also use the adjoint correspondence for based homotopy $[\Sigma X, Y]_* \cong [X, \Omega Y]_*$ and that fact that for simply-connected targets, and path-connected domains, the forgetful map from based homotopy to unbased homotopy is a bijection.

Thus $\Sigma c : \Sigma T^n \to \Sigma S^n$ has a homotopy right inverse, so $(\Sigma c)^* : [\Sigma T^n, A_1] \to [\Sigma S^n, A_1]$ is injective. Then, by applying the adjoint correspondence, c^* is injective.

2. This follows from Lemma 14 2.

3. This follows from 1. and the fact that $\text{Diffeo}(T^n) \setminus T^n \cong M(T^n)$ which I proved earlier.

In fact, the proof above shows

Theorem 16. For $n \geq 5$, $M(T^n) \cong \bigoplus_i H^i(T^n; \pi_i(TOP/O))/GL_n(\mathbb{Z})$.

The homotopy groups of TOP/O are listed below.

Remark 17. One can show that if X is a stably parallelizable manifold, that X and $X \# \Sigma^n$ are not concordant. The idea is to use the Milnor-Spanier theorem and Spanier-Whitehead duality to show that X stably pinches off the top cell.

7 PL manifolds

Two definitions of PL-manifold

Definition 18. A *PL-manifold* is a topological manifold with a maximal PL-atlas.

Definition 19. A *PL-manifold* is a simplicial complex which is a topological manifold and with the link of every vertex a PL-disk.

The definition of BPL(n) and BPL are a little more complicated, since they are not topological groups. The definition of PL/O is as the homotopy fiber of the map $BPL \rightarrow BO$.

Hirsch-Mazur show smoothing theory PL/O works in every dimension, PL/O is 6-connected.

Kirby-Siebenmann show smoothing theory TOP/PL works in dimension ≥ 5 and that $TOP/PL = K(\mathbb{Z}/2, 3)$.

Thus

$$\pi_i(TOP/O) = \begin{cases} 0 & i = 0, 1, 2, 4, 5, 6\\ \mathbb{Z}/2 & i = 3\\ \Theta_i & i \ge 6 \end{cases}$$

Wall proves that $M(T^5)$ has three elements.

8 Nilmanifolds

Using that Θ_* is finite, on can prove

Theorem 20. Let T_h^n be a smooth structure on a torus, $n \ge 5$. Then there is a finite cover diffeomorphic to the T^n .

Theorem 21 (Davis). Let X_h^n be a smoothing of a nilmanifold, $n \ge 5$. Then there is a finite cover diffeomorphic to a nilmanifold.

9 negatively curved manifolds

See my survey on Farrell-Jones.

10 Some references

- 1. Kirby and Siebenmann, Foundational Essays on Topological Manifolds, Smoothings, and Triagulations
- 2. Hirsch and Mazur, Smoothings of Piecewise Linear Manifolds
- 3. Davis and Petrosyan, Manifolds and Poincare Complexes http://www. indiana.edu/~jfdavis/notes/dp.pdf
- 4. Davis, The Work of Tom Farrell and Lowell Jones in Topology and Geometry
- 5. Fisher, Kalinin and Spatzier (Appendix by Davis) "Global Rigidity of Higher Rank Anosov Actions on Tori and Nilmanifolds"
- 6. Davis and Kirk, Lecture Notes in Algebraic Topology