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Slogan (Bill Clinton): It depends on what the meaning of the word “is”
is.

Our goal is to prove:

Theorem 1. Let n ≥ 5. Let Σn be an exotic sphere and Ωn be an exotic
torus, smooth manifolds which are homeomorphic, not diffeomorphic, to a
sphere and torus respectively. Then T n#Σn is not diffeo to T n, and Ωn×T k
is not diffeomorphic to T n+k.

1 Generalities

1. A topological n-manifold X is a second countable Hausdorff space lo-
cally homeomorphic to Rk.

2. A smooth manifold is a topological manifold with a maximal smooth
atlas.

3. Let X be a topological n-manifold. A smoothing of X is a maximal
smooth atlas on X. A marking on X is a homeomorphism h : M → X
from a smooth manifold to X; it induces a smoothing Xh on X. Two
markings h : M → X and h′ : M ′ → X induce the same smoothing
(Xh = Xh′) iff there is a diffeomorphism φ : M →M ′ so that h′◦φ = h.

4. The moduli set M(X) is the set of diffeomorphism classes of smooth
manifolds homeomorphic to X.
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5. Two smooth structures X0 and X1 on X are concordant if there is a
smooth structure on X × I which restricts to Xi on X × i, i = 0, 1. (A
concordance is determined by a marking H : W → X × I).

6. Two smooth structures X0 and X1 are isotopic if there is a smooth
manifold M and a level-preserving homeomorphism H : M×I → X×I
(H(x, t) = (F (x, t), t)) inducing Xi on X × i, i = 0, 1.

Theorem 2 (Concordance implies isotopy). If dimX ≥ 5, then con-
cordant structures are isotopic (and hence diffeomorphic).

Thus concordant structures are diffeomorphic. This also follows from
the s-cobordism theorem.

7. The structure set S(X) is the set of concordance classes of smoothing
on X. Note

S(X) �M(X)

Example 3. (a) A point has an infinite number of markings but one
smoothing.

(b) S1 has an infinite number of smoothings, but S(S1) = ∗
(c) S(S7) = Z/28, M(S7) = Z/28/(x ∼ −x) so #M(S7) = 15

(d) M(E4k
8 ) = ∅. (E8 is a closed, topological 4k-manifold with sig-

nature 8. Note that E8 − ∗ is smoothable with a trivial tangent
bundle.)

(e) Let M and N be a smooth manifolds with ∂ and f : ∂M → ∂N
be a diffeomorphism. Then M ∪f N is a topological manifold. It
doesn’t have a unique smoothing, but it has a unique concordance
class of smoothings in S(M ∪f N).

Why is S(X) nicer than M(X)? It is in bijection with a computable
abelian group, and useful for gluing.

8. Homeo(X) y S(X) (α, [Xh]) 7→ [Xα◦h]. I.e. M
h−→ X

α−→ X.

Lemma 4. Homeo(X)\S(X)→M(X) is a bijection.

Proof. Well-defined and onto are clear.
Injective? If f : M → X, g : M → X are markings, then f = (f ◦
g−1) ◦ g.
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Let Homeo0(X) be the group of homeomorphisms isotopic to the iden-
tity. The mapping class group MCG(X) is Homeo(X)/Homeo0(X).
Two homeomorphisms α, β ∈ Homeo(X) are pseudoisotopic if there is
γ ∈ Homeo(X×I) so that α = γ|X×0 and β = γ|X×1. The reduced map-

ping class group M̃CG(X) is Homeo(X)/ΨHomeo0(X), so two homeos
represent the same element iff they are psuedoisotopic.

Note that ΨHomeo0(X) acts trivially on S(X). We conclude

Lemma 5. M̃CG(X)\S(X)→M(X) is a bijection.

Remark 6. SupposeX0 is a smoothing ofX and suppose Diffeo(X)\S(X)→
M(X) is a bijection. Then any smoothing not concordant to X0 is not
diffeomorphic to X0.

This is what happens for the torus.

Lemma 7. M̃CG(T n)
∼=−→ GLn(Z)

Proof. There is a split surjection H1 : Homeo(T n) → GLn(Z) split by
L. We need to show that any h : T n → T n is Ψ-isotopic to L ◦H1(h).

Note they are homotopic: (1) use T n = K(Zn, 1) or (2) lift h to h̃ :

Rn → Rn. Take a straightline homotopy between h̃ and L ◦H1(h).

Now apply the Borel conjecture for T n × I, to see the homotopy is
homotopic, relative to ∂(T n × I) to a homeomorphism.

2 Bundles

Let BO(n) = Gr(n,R∞). This is a classifying space for vector bundles over
a finite CW complex B:

There is an n-plane bundle γ over BO(n) so that

[B,BO(n)]→ {iso classes of n-plane bundles over B}
[f ] 7→ [f ∗γ]

Example 8. Let Mn ⊂ Rk be a smooth submanifold. Then
M → Gr(k,Rk), p 7→ TpM ⊂ Rn.
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Definition 9. Two vector bundles η and ξ over B are stably equivalent if
η ⊕ Rk ∼= ξ ⊕ Rl

Let BO = colimBO(n). Then [B,BO] classifies stable vector bundles
over B. It is an abelian group, computable by the Atiyah-Hirzebruch spectral
sequence.

Definition 10. A n-plane microbundle over B is a pair of maps

B
i−→ E

p−→ B

satisfying p ◦ i = IdB and the following local triviality condition: for every
b ∈ B there exists open neighborhoods U of b and V of i(b) with i(U) ⊂ V
and a homeomorphism V → U×Rn so that the following diagram commutes

V

U U

U × Rn

@
@
@@R

p

?

∼=
�
�
���i

@
@
@@R

Id×0
�
�
���

p1

Example 11. The tangent microbundle of a topological n-manifold X is

X
∆−→ X ×X p1−→ X.

X ×X

( )
b ∈ U

V
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Most of the machinery of bundle theory applies to microbundles. For

example, two bundles B
i−→ E

p−→ B and B
i′−→ E ′

p′−→ B are isomorphic if
there are neighborhoods W and W ′ of i(B) and i′(B) respectively and a
commutative diagram

W

B B

W ′

@
@@R

?

∼=
�
���

@
@R �

��

An Rn-bundle with a zero section is a fiber bundle E → B with fiber Rn

and structure group TOP (n) = Homeo (Rn rel 0). Every Rn-bundle with a
zero section determines a microbundle. A theorem of Kister and Mazur gives
a one-to-one correspondence between isomorphism classes of Rn-bundles with
a zero section and isomorphism class of microbundles.

There are spaces BTOP (n) and BTOP which classify microbundles and
stable microbundles. Assume BO → BTOP is a fibration by redefining
BO = ETOP/O or by replacing the map by a fibration.

3 Fundamental Theorem

Given a diagram
B

p
��

A
α // C

let Liftp(α) be the set of maps α̂ : A → B so that p ◦ α̂ = α. Let [Liftp(α)]
be the set of vertical homotopy classes of lifts. A vertical homotopy is a map
H : A× I → B so that for all a ∈ A and t ∈ I, p(H(a, t)) = α(a), in which
case H(−, 0) and H(−, 1) are vertically homotopic. We will usually leave p
out of the notation.

Fundamental Theorem of Smoothing. Let X be a topological manifold
with dimX ≥ 5. Let τX : X → BTOP denote a classifying map of the stable
tangent bundle. X admits a smooth structure if and only if there is a lift
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X → BO such that the following diagram commutes.

BO

��
X

::

τX // BTOP

In fact, the classifying map of the smooth tangent bundle gives a bijection

S(X)
∼−→ [Lift(τX)]

where [Lift(τX)] denotes vertical homotopy classes of lifts of τX (vertical
homotopy means a homotopy through lifts).

To illustrate some subtlety, note that exotic spheres are stably paralleliz-
able – why does this not contradict the fundamental theorem?

4 Some homotopy theory

Let Xh be a smooth structure on X. We wish to establish a bijection

jh : [X,TOP/O]
∼=−→ S(X).

TOP/O −−−→ BOy
BTOP

1. TOP/O is 2-connected (showing that it is path-connected is a difficult
theorem - the solution to the annulus conjecture.)

2. TOP/O,O, TOP,BTOP,BO are H-spaces (idea: R∞ ⊕ R∞ ∼= R∞).

3. TOP/O,O, TOP,BTOP,BO are infinite loop spaces: e.g. ∃A1, A2, . . .
so that TOP/O ' ΩA1, A1 ' ΩA2, etc., where ' means homotopy
equivalent.

4. There is a long exact sequence of abelian groups

· · · → [ΣB,BO]→ [ΣB,BTOP ]→ [B, TOP/O]→ [B,BO]→ [B,BTOP ]

5. BO → BTOP is a principal TOP/O-bundle.
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TOP/O is an H-space and I am not going to spell out what I mean by
a principal H-space bundle. But it does mean that there is a commutative
diagram

BO × TOP/O BO

BTOP

and hence a map [B,BO]× [B, TOP/O]→ [B,BO].

Corollary 12.
BO

��
B τ // BTOP

The abelian group [B, TOP/O] acts freely and transitively (on the right) on
[Lift(τ)].

Thus if we choose a lift τ̂ : B → BO, there the orbit map gives a bijection
[B, TOP/O]

'−→ [Lift τ ].
In particular, if M is a smooth manifold of dimension ≥ 5, there is a

bijection
jh : [M,TOP/O]

'−→ S(M)

defined by acting on the tangent bundle τ : M → BO to get a new lift of
p ◦ τ : M → BTOP , and choosing the corresponding smooth structure given
by the fundamental theorem.

Furthermore, since TOP/O is an infinite loop space, the Atiyah-Hirzebruch
spectral sequence applies to compute [M,TOP/O], which is H0 of a gener-
alized cohomology theory.

5 Exotic spheres

Let Θn be the equivalence classes of smoothing on Sn under orientation-
preserving diffeomorphism. This is an abelian monoid under connected sum.

Lemma 13. Let n ≥ 5.

1. Θn is a finite abelian group.
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2. S(Sn)
∼−→ Θn

3. The composite πn(TOP/O)
∼−→ [Lift(τSn)]

∼←− S(Sn)
∼−→ Θn is an iso-

morphism of abelian groups.

Discussion of proof. Smale proved that every exotic sphere of dimen-
sion ≥ 5 is obtained by gluing Dn ∪f Dn for some diffeomorphism
f : Sn−1 → Sn−1. It follows that Θn is a group. The finiteness is due
to Kervaire-Milnor. It is easy to see an epimorphism S(Sn)→ Θn. To
show injectivity one uses the Alexander trick.

Lemma 14. Let M and N be smooth manifolds with dimM ≥ 5.

1. If M is closed, connected, let c : M → Sn be a degree one map; for
example, choose an embedded disk Dn ↪→M and let c : M →M/(M −
int Dn) = Sn be the quotient map. The following diagram commutes

[Sn, TOP/O]
c∗−−−→ [M,TOP/O]

j

y yj
S(Sn) −−−→ S(M)

where the bottom horizontal map is [Σ] 7→ [M#Σ].

2. The following diagram commutes

[M,TOP/O]
pr∗−−−→ [M ×N, TOP/O]

j

y yj
S(M) −−−→ S(M ×N)

where the bottom horizontal map is [Mh] 7→ [Mh ×N ]

Proof. 1. The idea is that there is a cobordism W from M to M
∐
Sn

and that the corresponding assertion is obvious for M
∐
Sn. Indeed, let

φ : S0 × Dn ↪→ M
∐
Sn (whose image intersects both M and Sn) and let

W = (M
∐
Sn) × I ∪φ D1 × Dn be the result of adding a 1-handle to M

along φ. Give W a smooth structure which restricts (up to concordance) to
the given smooth structures on the boundary.
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There is a commutative diagram

[Sn, TOP/O] [M
∐
Sn, TOP/O] [W,TOP/O] [M,TOP/O]

S(M
∐
Sn) S(W ) S(M)

S(Sn)

j ∼=

j ∼=

∼=

j ∼= j ∼=

α β

γ

The middle and right horizontal arrows are induced by restriction, and the
upper left horizontal arrow is induced by inclusion of a summand. For a
smooth structure Σ on Sn, let α[Σ] = [M

∐
Σ] and γ[Σ] = [M#Σ]. For the

definition of β choose a point p ∈ Sn and glue W minus an open tubular
neighborhood of {p}× I with Σ× I minus an open tubular neighborhood of
{p} × I. Note then that S(W ) → S(M

∐
Sn) is a bijection and Lemma 14

1 follows.
2. We will show that diagram below is commutative

[M,TOP/O]
pr∗−−−→ [M ×N, TOP/O]

∼=
y y∼=

[Lift τM ] −−−→ [Lift τM×N ]

∼=
x x∼=

S(M) −−−→ S(M ×N)

where the middle horizontal arrow is defined using the H-space map BO ×
BO → BO which has that property that if Xi → BO, i = 1, 2 classifies a
bundles αi, i = 1, 2 then X1 ×X2 → BO × BO → BO classifies α1 × α2. It
follows that the bottom rectangle commutes. The top rectangle commutes
because the following diagram commutes:

BO × TOP/O −−−→ BOy ∥∥∥
BO ×BO −−−→ BO
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6 The torus

Theorem 15. Let n ≥ 5. Let Σn be an exotic sphere and let Ωn be an exotic
torus.

1. [T n#Σn] 6= [T n] ∈ S(T n)

2. [T k × Ωn] 6= [T k+n] ∈ S(T k+n).

3. [T n#Σn] 6= [T n] ∈M(T n) and [T k × Ωn] 6= [T k+n] ∈M(T k+n).

Proof. 1. The key fact we need to show is that c∗ : [T n, TOP/O] →
[Sn, TOP/O] is injective. Since pr is split surjective, pr∗ is split injective,
so the desired result follows from the above lemma. The key ingredients
in showing that c∗ is injective (actually split injective) are that TOP/O is
2-connected, that TOP/O ' ΩA1 for some space A1, and that ΣT n ' ∨ej.
We will also use the adjoint correspondence for based homotopy [ΣX, Y ]∗ ∼=
[X,ΩY ]∗ and that fact that for simply-connected targets, and path-connected
domains, the forgetful map from based homotopy to unbased homotopy is a
bijection.

Thus Σc : ΣT n → ΣSn has a homotopy right inverse, so (Σc)∗ : [ΣT n, A1]→
[ΣSn, A1] is injective. Then, by applying the adjoint correspondence, c∗ is
injective.

2. This follows from Lemma 14 2.
3. This follows from 1. and the fact that Diffeo(T n)\T n ∼= M(T n) which

I proved earlier.

In fact, the proof above shows

Theorem 16. For n ≥ 5, M(T n) ∼= ⊕iH i(T n; πi(TOP/O))/GLn(Z).

The homotopy groups of TOP/O are listed below.

Remark 17. One can show that if X is a stably parallelizable manifold,
that X and X#Σn are not concordant. The idea is to use the Milnor-Spanier
theorem and Spanier-Whitehead duality to show that X stably pinches off
the top cell.
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7 PL manifolds

Two definitions of PL-manifold

Definition 18. A PL-manifold is a topological manifold with a maximal
PL-atlas.

Definition 19. A PL-manifold is a simplicial complex which is a topological
manifold and with the link of every vertex a PL-disk.

The definition of BPL(n) and BPL are a little more complicated, since
they are not topological groups. The definition of PL/O is as the homotopy
fiber of the map BPL→ BO.

Hirsch-Mazur show smoothing theory PL/O works in every dimension,
PL/O is 6-connected.

Kirby-Siebenmann show smoothing theory TOP/PL works in dimension
≥ 5 and that TOP/PL = K(Z/2, 3).

Thus

πi(TOP/O) =


0 i = 0, 1, 2, 4, 5, 6

Z/2 i = 3

Θi i ≥ 6

Wall proves that M(T 5) has three elements.

8 Nilmanifolds

Using that Θ∗ is finite, on can prove

Theorem 20. Let T nh be a smooth structure on a torus, n ≥ 5. Then there
is a finite cover diffeomorphic to the T n.

Theorem 21 (Davis). Let Xn
h be a smoothing of a nilmanifold, n ≥ 5. Then

there is a finite cover diffeomorphic to a nilmanifold.

9 negatively curved manifolds

See my survey on Farrell-Jones.
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